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Abstract 

Traditional electricity planning models regard electricity demand as a 

deterministic parameter (i.e. the electricity demand is given exogenously) to select 

power generation technologies. But in today’s world, energy planners are facing 

tremendously complex environments full of uncertainty and risks, and electricity 

industry is also in an uncertain situation, where the electricity demand could not be 

predicted precisely. It is not reasonable to assume a certain power demand. In addition, 

most of electricity planning models require that total power output must satisfy the 

aggregate electricity demand; however, electricity demand patterns are considerably 

different for different regions. Therefore, an electricity supply planning model should 

be developed for handling demand uncertainty and diversity. 

Stochastic programming has proven to be applicable to problems involving 

uncertainty. Hence, we adopt this method to divide generation investment decisions 

into two stages. However, it may lead to a large numbers of random variables, which 

tends to complicate the solution process. As a result, we also combine the scenario 

tree method and Monte Carlo simulation to reduce possible nodes and determine the 

future electricity demand values and probability. 

This paper uses Taiwan’s electricity sector as a case study for demonstrating the 

applicability of the developed model, where the region of Taiwan could be divided 

into four sub-regions, including north, central, south, and east to reflect regional 

electricity demand diversity. Finally, scenario analyses were conducted to evaluate the 

impact on the regional generation portfolios. 

Keywords: Demand uncertainty; Two-stage stochastic programming; Monte Carlo 

simulation; Demand diversity 

1. Introduction 

Owing to the higher concentration of population in the northern region, Taiwan 



exhibits regional electricity imbalances between the north and the south regions. In 

2014, the maximum power supplying capacity of northern region only accounted for 

35% of the entire power system; however, its peak load amounted to 40% of the 

national electricity demand [1]. The electricity supply of the northern region is 

insufficient to meet its demand, and so the situation arises that power from the south 

is diverted to satisfy the load in the north. In other words, a large amount of power has 

to be transmitted over 345 kV extra high voltage (EHV) lines from south to the north, 

owing to the deficiency in the local electricity generation in the northern region.  

System disturbances caused by the tripping of EHV transmission lines may result in 

severe system instability. For instance, the collapse of the EHV transmission tower in 

1999 initiated the tripping of the lines between southern and northern-central areas, 

resulting in a total system blackout and significant economic and industrial losses. In 

order to minimize the investment cost and the loss of transmission lines, and to 

prevent major blackout events, new generators should be installed close to load 

demanding areas to help achieve a balance between power supply and demand. 

In addition, planning and constructing large-scale power plants and devices, such 

as power transmission and distribution lines, generally requires a substantial amount 

of lead time and huge capital investment. Taiwan is further hindered by its status as an 

island, which precludes its importation of electricity from other countries. 

Furthermore, the Taiwanese government decided to halt construction of the Fourth 

Nuclear Power Plant (Lungmen Nuclear Power Plant) in April 2014. The first reactor 

was sealed after the completion of safety checks, and construction of the second 

reactor was halted. Due to restrictions in nuclear power policies, the future expansion 

of nuclear power units is restricted. Nevertheless, as the economy progresses, the 

demand for electricity in Taiwan will continue to rise. Thus, regional-scale electricity 

planning is a crucial topic for Taiwan’s power sector.  

The objective for this paper is to construct an electricity planning model that 

incorporates demand uncertainty and diversity. Using Taiwan’s electricity sector as a 

case study, we divide Taiwan into four regions, in order to consider the load diversity. 

The scopes of the four regions considered in this study are shown in Table 1 

(excluding surrounding islands). The proposed model is designed to minimize the 

expected sum of discounted generation costs. The model also factors in the constraints 

of conventional electricity planning models. We then performed simulation analyses 

and observed the technology portfolios in various scenarios. Finally, some suggestions 

are made on the basis of the simulation results. 

 



 

Table 1 Scope of each region [2] 

Region Scope 

Northern region 
Yilan, Taipei City, Taipei North, Taipei West, Taipei South, 

Taoyuan, Keelung Districts 

Central region Hsinchu, Miaoli, Taichung, Changhwa, Nantou Districts 

Southern region 
Yunlin, Chiay, Tainan, Xinying, Kaohsiung, Fengshan, 

Pingtung Districts 

Eastern region Hualien and Taitung Districts 

2. Literature review 

Traditional energy planning is based on the least-cost method. For example, the 

demand is mostly portrayed as price-inelastic. That is, deterministic demand is to be 

met at minimum cost [3-5]. A common feature of this approach is that they are 

formulated as deterministic mathematical programming models, ignoring the 

uncertainties of parameters. But in today’s world, the energy planners are facing 

tremendously complex environments full of uncertainty and risks, and the electricity 

industry is in an uncertain situation. If uncertainties are not adequately identified and 

handled, the actual economic and feasible operation of the energy system may deviate 

from the optimal one. Therefore, the assessment of uncertainty in the modelling of the 

energy system has recently received considerable research attention [6].  

Further investigation of the literature on optimization under uncertain conditions 

indicates that stochastic programming is considered as an appropriate approach for 

handling uncertainties in long term strategic planning, due to the incorporation of 

flexibility within a dynamic optimization framework [7-8]. This methodology has 

been applied to various fields, such as supply chain planning [9-10], process design 

and operation [11-12], and electricity supply planning [13-16]. However, there are 

different types of uncertainty in the optimal planning of an electrical system, for 

example, uncertainty in demand [17], uncertainty in economic parameters, such as 

energy price [8] and unit investment cost [16]; and uncertainty in technological 

parameters, such as efficiency. In most of the aforementioned studies, energy demand 

uncertainty is given the most significant attention among the different sources of 

uncertainties [6, 18]. This implies that the consideration of the uncertainty of 

electricity demand is of significant importance for an electrical system. Hence, our 

study integrates electricity demand uncertainty into the electric power system 

expansion, using stochastic programming to ensure flexibility regarding this 



uncertainty.   

A major difference between the stochastic programming done in previous work 

and the work presented here is that the previous work merely required that total power 

output must satisfy the aggregate electricity demand, while this work extends that 

formulation to reflect regional electricity demand diversity.  

Although stochastic programming can involve uncertain parameters, these 

parameters are most accurately described as continuous random variables. It is 

difficult to optimize directly in terms of continuous distributions. Hence, in most 

applications the continuous distributions are approximated by discrete distributions 

with possible realizations for the random variables. In general, a scenario tree is a set 

of nodes and branches used in stochastic programming models. Every node in the tree 

represents a possible state of the world at a particular time point and a position where 

a decision can be made. The first node in the scenario tree is defined as the root node, 

representing the initial situation. This is realized in our model by the value of the 

annual electricity demand in the current year. Any possible forward path from the root 

node to a node at the last time point is defined as a scenario describing a plausible 

realization of annual electricity demands over the time horizon.  

However, previous studies have assumed that scenario trees are dependent on 

decision with a given probability. In contrast, our model incorporates Monte Carlo 

simulation to determine future annual electricity demand and their path probabilities, 

rather than assigning path probabilities arbitrarily. In summary, the potential impacts 

of uncertain electricity demand are accounted for by formulating a power system 

planning problem as a stochastic programming model. The scenario tree method and 

Monte Carlo simulation are integrated into the decision framework. Finally, the model 

has been applied for the case study of Taiwan's electricity sector. 

3. Model description 

A stochastic programming problem with recourse is referred to as a two-stage 

stochastic problem. In the first stage, a decision has to be made without complete 

information on random factors. After the values of random variables are known, 

recourse action can be taken in the second stage. 

When the random variation of a stochastic parameter, such as electricity demand, 

is represented in the model endogenously, an approach based on the stochastic 

programming is intended. Stochastic programming with recourse has been basically 

founded on segregation of the decision variables into two distinct partitions. First 



stage variables are decided prior to the uncertainty realization. The second stage 

variables are associated with decisions that have considered uncertainty realization. 

Because the coefficients of the objective function in the proposed model are subjected 

to uncertainty, the first stage can be implemented in order to inform decisions on the 

investment (i.e. the installed capacity), while the second stage is used to evaluate the 

impact of variations in parameters related to the operation (i.e. power generation).  

The objective function is expressed to minimize the expected sum of discounted 

generation costs, including fixed operation and maintenance (O&M) costs, investment 

costs, fuel costs, and variable operation and maintenance (O&M) costs. The 

development of a mathematical model for the objective function is described by the 

following. 

3.1 Objective function 

First Stage  

 

 

Second Stage  

 

 

1. Fixed operation and maintenance costs 

 

Where m is generation technology; i is the region; t is the planning period (1…T); 

r is the discount rate. 

capm,i,t: the cumulative installed capacity of technology m, in region i, during 

period t; 

fcm,i,t: unit costs of the fixed operation and maintenance of technology m, in 

region i, during period t. 

2. Investment costs (for new capacity additions) 



 

xm,i,t: new capacity additions for technology m, in region i, during period t; 

ccm,i,t: unit investment costs of technology m, in region i, during period t. 

3. Fuel costs 

 

Where b is the block formed by the time axis on the load duration curve; w is the 

paths. 

fucm,i,t: unit fuel costs of technology m, in region i, during period t; 

frm,i,t: the growth rate of unit fuel costs of technology m, in region i, during 

period t; 

ppm,i,t,b,w: power output of technology m, in region i, during period t, in block b, 

in path w; 

hb: duration time of block b. 

4. Variable operation and maintenance costs 

 

vcm,i,t: unit costs of variable operation and maintenance of technology m, in 

region i, during period t. 

Probw: probability of path w. 

3.2. Constraints 

The following 13 constraints together with objective function, complete the 

model formulation. 

Constraint 1: Capacity Transfer 

 

Where retirem,i,t denotes the capacity of technology m, in region i that retired in 

period t. The cumulative installed capacity equals the cumulative installed capacity of 

the previous period plus the capacity of newly installed plants minus the capacity of 



retired plants. 

Constraint 2: Non-negative constraint 

 

The new capacity additions must be zero or positive. 

Constraint 3: Balance equation between power supply and demand 

 

 

In the formula above, flowinm,i,i1,t,w denotes electricity interchange from other 

regions (i1) to region i of technology m, during period t, in path w. In contrast, 

flowoutm,i,i2,t,w represents electricity interchange from region i to other regions (i2) of 

technology m, during period t, in path w. In addition, Dt,i,b,w represents the load 

demand during period t, in region i, in block b, in path w, and losst denotes the loss 

factor of electricity interchange during period t. This constraint ensures that regional 

power output must satisfy the regional load demand of each period after the deduction 

of line losses. 

Constraint 4: Peaking reserve constraint 

 
Where Dt,i,(peak),w is the load demand during period t, in region i, in peak block 

(b=peak), in path w, and re denotes the reserve margin. This constraint ensures that 

total installed capacity satisfies the load demand of the peaking time-slice (b=peak) by 

a certain percentage (reserve margin).  

Constraint 5: Capacity constraint 

 

 

α m is the availability factor of technology m. This constraint ensures that the 

actual power output from different technologies does not exceed their available 

capacity in each region, during each period. 

Constraint 6: Power generation constraint of renewable energy technologies  



 

 

cfm represents the capacity factor of renewable energy technology. Due to 

seasonal and climatic factors that affect the reliability of renewable energy, the 

capacity factors of renewable energy technologies are relatively lower than those of 

fossil fuels. The constraint must be placed on capacity factors to limit their maximum 

power output. 

Constraint 7: Bounds of capacity 

 

Upbcapm,i,t denotes the development potential of technology m, in region i, 

during period t. This constraint ensures that the development capacity of each 

generating technology does not exceed the potential. 

Constraint 8: Operation constraint 

 

 

This constraint is based on the operational characteristics of electricity 

generating technologies that limit their capability to supply electricity. Coal-fired and 

nuclear power plants take longer to start-up and shut-down and are thus less 

responsive to sudden load demand changes. Therefore, the power output of these two 

types of plants during peak load block sets at zero. 

Constraint 9: Capacity constraint of LNG reception terminals 

 

In the formula above, gasfac represents the conversion factor, which converts 

from power generation to liquefied natural gas (LNG) consumption and gaslimitt,w 

denotes the available supply of LNG for power generation during each period, in each 

path. This constraint ensures that the amount of LNG used does not exceed the 

available supply, the imported amount of which is limited by the receiving capacity of 

reception terminals. 

Constraint 10: Bounds of carbon dioxide emissions 



 

CO2coem is the carbon emissions coefficient of fuel used in technology m. This 

formula calculates the amount of carbon dioxide emissions during each period and 

can be applied to limit carbon dioxide emissions in some selected scenarios. 

Constraint 11: Bounds of electricity interchange (inflow) 

 

 

The constraint limits the maximum electricity inflow. 

Constraint 12: Bounds of electricity interchange (outflow) 

 

 

The constraint limits the maximum electricity outflow. 

Constraint 13: Balance equation between electricity inflow and outflow 

 

 

The constraint ensures the balance between electricity inflow and outflow. 

4. Data sources and adjustments 

In order to demonstrate the applicability of our proposed model, we study the 

case of power system expansion in Taiwan's electricity sector. In the following, we 

describe our data sources and the necessary adjustments of the model. 

4.1 Electricity generation cost 

We use data from various studies in order to calculate electricity generation costs. 

Taiwan Power Company (Taipower) [19] was used for fixed and variable O&M costs, 

and investment costs for new capacity additions. Due to a lack of data concerning 

oil-fired generation technologies, we adopted cost data in this respect from 

International Energy Agency (IEA) [20]. Historical fuel price and the coefficients of 

carbon dioxide emissions were based on data provided by Greenhouse Gases Group 

and Department of Accounting of Taipower, respectively. The generation cost data for 



various generation technologies are summarized in Table 2. 

However, due to a small cumulative installed capacity and incomplete regional 

generation data, solar PV technology is not incorporated in our model. In addition, the 

development of wind power in Taiwan currently only focusses on onshore technology. 

Offshore wind farms will be installed after 2015, but because offshore wind farms are 

set at sea, it is not easy to distinguish them into different regions. Therefore, we only 

consider onshore wind power for new capacity additions. 

Table 2 Generation cost data and carbon dioxide emissions coefficients 

Cost items/ 

Technologies 

Fixed O&M 

costs 

(Million 

NTD /MW) 

Investment costs for 

new generation 

units (Million NTD 

/MW) 

Fuel costs 

(NTD/kWh) 

Variable 

O&M costs 

(NTD/ 

MWh) 

Coefficients 

of carbon 

dioxide 

emissions 

(kg/kWh) 

Coal-fired 0.5104 64.2 1.14 39.3 0.931 

Oil-fired 0.9112 32.7 5.98 629.9 0.803 

LNG-fired 0.4044 28.3 3.53 62.5 0.423 

Nuclear 1.2384 124.3 0.35 93.3 0.011 

Conventional 

hydro 
0.6328 17.8 0 601.2 0.001 

Wind power 0.4746 78.2 0 0 0.037 

Notes: NTD stands for New Taiwan Dollar; 1 USD is approximately equivalent to 30 NTD. 

Sources: Taiwan Power Company, 2010; IEA, 2010. 

4.2 The growth rate of fuel price 

The growth rate data of fuel price was taken according to the Taiwan Power 

Research Institute [21]. The average annual growth rate for was 2.88% for LNG, 

2.82% for oil, 2.30% for coal, and 1.71% for nuclear.  

4.3 An upper limit of power generation capacity 

The realizable generation potential for each renewable energy source, according 

to the development goals estimated by Taipower [2], was imposed as the limit for 

each renewable energy source.  

4.4 An upper limit for LNG import 

Yong-an and Taichung are two current LNG reception terminals in Taiwan with a 

total receiving capacity of 12 million tons per annum. Given the implementation of 

scheduled expansion projects, their receiving capacity should reach 18 million tons in 



2020 and 20 million tons in 2025. 

4.5 Regional load demand 

The historical load demand data of northern, central, southern and eastern 

regions were analyzed to calculate their distribution functions and descriptive 

statistics. Due to the adjustments of region partition and statistical approach by 

Taipower, only the data after year 2006 are more reliable, and hence we use the 

historical load demand data from year 2006 to 2012. In addition, the load demand data 

covers one state-owned integrated utility (Taipower) and several independent power 

producers (IPPs), but does not cover cogeneration systems.    

The random variable in this study is the growth in the regional load demand. An 

analysis of historical data indicates that this variable displays a normal distribution. 

We then used the Monte Carlo approach to simulate future regional load demand and 

identified the values that appeared the most by frequency distribution, which then 

served as the values of the nodes. By corresponding these to the cumulative 

probability distributions of each possible path, we can obtain the probability of all the 

possible paths. 

4.6 Electrical network flow constraint 

The amount of power that can be sent over a transmission line is limited. 

However, due to a lack of realistic power transmission capacity, we use the maximum 

power delivery volumes from the most recent ten years as the upper bound of 

electricity interchanges. The highest amount of power transmission from the southern 

to central region was 2,757 MW in the year 2006, and was 4,110 MW from the central 

to northern region. Because the electricity generation of the northern region is not 

sufficient to meet its demand, the amount of power transmission from the northern to 

the central and southern regions was assumed to be 0 MW. 

4.7 Other parameters 

The reserve margin rate was set at 15% by the government. The discount rate 

remained constant at 5%, and the modelling period was 14 years, from 2012 to 2025. 

The Taipower Planning Department estimated that line loss rate was projected to fall 

from 4.69% in 2013 to 4.47% in 2025, due to line loss improvement plans. In addition, 

no new capacity additions for nuclear were assumed until 2025.  

5. Results 

5.1 Scenario design 



The scenarios in our simulations are designed as follows:  

Baseline scenario: We optimize the electricity generation mix from a 

combination of conventional (coal, oil, LNG, and nuclear) and renewable (hydro, and 

wind) energy sources from 2012 to 2025, by minimizing electricity generation costs 

without considering demand uncertainty. In this scenario, the existing three nuclear 

plants (5,144MW) will be decommissioned when their authorized 40-year lifespans 

expire between 2018 and 2025. 

Nuclear extension scenario: In addition, the Taiwan government decided to halt 

construction of the Fourth Nuclear Power Plant in April 2014. The first reactor was 

sealed after the completion of safety checks, and construction of the second reactor 

was halted. This may result in a large impact on the power shortage, especially in 

northern region. Therefore, the lifetime extension of the existing three nuclear plants 

has become one of the possible options for replacing the Fourth Nuclear Power Plant. 

Hence, the nuclear extension scenario presumes that the First, Second and Third 

Nuclear Power Plants will further extend the operating lives of their reactors for up to 

20 additional years. In other words, the installed capacity of the nuclear power plants 

will be 5,144 MW in 2025, which is the existing capacity (excluding the newly 

constructed nuclear plant), and no new units will be installed. 

CO2 emissions reduction scenario: In response to the Fukushima nuclear crisis, 

caused by the 2011 earthquake in Japan, the government of Taiwan announced the 

“New Energy Policy” to promote nuclear safety, nuclear power reduction, and a low 

carbon emission environment, and to achieve a reduction in CO2 emissions in the 

future. Therefore, CO2 emissions reduction scenarios were also involved to examine 

annual technology portfolios. In the CO2 emissions reduction scenario 1, we assume a 

30% reduction compared to the baseline scenario, and no new construction and life 

extension of nuclear power plants. CO2 emissions reduction scenario 2 sets the same 

reduction target as the first, but with the extension of existing nuclear power plants. 

The case designs above investigate three major scenarios, involving the reference 

case (baseline), the life extension of existing nuclear power plants, and the reduction 

of carbon dioxide emissions. The settings for each scenario are summarized in Table 

3. 

 

 

 



Table 3 List of scenarios 

 
Baseline 

scenario   

Nuclear 

extension 

scenario 

CO2 emissions 

reduction 

scenario 1 

CO2 emissions 

reduction 

scenario 2 

Constructing  nuclear 

power plant (Fourth 

Nuclear Power Plant) 

Non-operation Non-operation Non-operation Non-operation 

Existing nuclear power 

plants 
Non- Extension Extension Non- Extension Extension 

The installed capacity 

of nuclear in 2025 
0MW 5,144 MW 0MW 5,144 MW 

CO2 emissions 

reduction target in 

2025 

Unrestricted Unrestricted 

30% reduction   

compared to  

baseline scenario 

30% reduction   

compared to  

baseline scenario 

5.2 Simulation results 

The section applies the proposed portfolio model to three major scenarios and 

shows changes in technology portfolio.  

5.2.1 Nuclear extension scenario 

Figure 1 illustrates shares of installation capacity by technology in nuclear 

extension scenario, while Table 4 shows the comparison of the regional installed 

capacity between baseline and nuclear extension scenario in 2025. The results show 

that the total installed capacity of coal-fired increases to 25,257MW in 2025, which is 

4,125MW lower than the baseline scenario. This is mainly because coal-fired and 

nuclear power plants both supply for the base-load demand, and when existing nuclear 

power plants extend the operating lives, the capacity for coal-fired will decrease.  

For LNG-fired, the total installed capacity expands to 19,968MW in 2025, which 

is 1,709MW lower than the baseline scenario. In summary, the capacity of both 

coal-fired and LNG-fired drops in this scenario. In addition, the capacity of oil-fired 

reduces 486MW compared to the baseline scenario. The capacity changes for 

conventional hydro and wind power between baseline and nuclear extension scenario 

are inconsequential, due to reaching the upper limit of development potential. 

As for the installed capacity in each region, when nuclear extension is taken into 

account, the capacity of coal-fired from northern, central, southern and eastern regions 

reduces 1,723MW, 1,608MW, 793MW, 0MW in 2025, respectively. This shows that 

the extension of nuclear power plants can decrease the capacity for coal-fired in each 



region. The capacity of LNG-fired from northern and central regions reduces 667MW 

and 1,062MW; nevertheless increases 21MW from southern region in 2025. This 

shows the extension of nuclear power plants can decrease the capacity of LNG-fired 

for northern and central regions, but insignificant for southern region. Because the 

high capacity for LNG-fired (6,044MW) has installed in the current year, hence it is 

not easily climbed by other influential factors in this region. 

 

Fig. 1 Shares of installation capacity by technology in nuclear extension scenario 

Table 4 Comparison of the regional installed capacity between baseline and nuclear 

extension scenario in 2025 

 Unit: MW 

Installed capacity in 2025 

Region Technologies 
Baseline scenario 

Nuclear extension 

scenario (B)-(A) 

(A) (B) 

Northern 

region 

Coal-fired 6,557 4,834 -1,723 

Oil-fired 95 95 0 

LNG-fired 8,914 8,247 -667 

Nuclear 0 3,242 3,242 

Hydro 281 267 -14 

Wind 295 163 -132 

Central 

region 

Coal-fired 10,498 8,890 -1,608 

Oil-fired 567 81 -486 

LNG-fired 7,101 6,039 -1,062 

Hydro 1,472 1,482 10 

Wind 427 427 0 



Southern 

region 

Coal-fired 11,030 10,237 -793 

Oil-fired 0 0 0 

LNG-fired 5,661 5,682 21 

Nuclear 0 1,902 1,902 

Hydro 183 187 4 

Wind 478 610 132 

Eastern 

region 

Coal-fired 1,297 1,297 0 

Hydro 213.6 213.6 0 

5.2.2 CO2 emission reduction scenario 1 & 2 

CO2 emission reduction scenario 1 hypothesized that there is no extension of 

nuclear power plants but CO2 emission is reduced to 30% compared to the baseline 

scenario. Figure 2 depicts shares of installation capacity by technology in CO2 

emission reduction scenario 1. When CO2 emissions reduction target is incorporated 

into the simulation, the total installed capacity of coal-fired decreases, but LNG-fired 

increases due to the higher CO2 emissions coefficient for coal-fired. The simulation 

results show that the total installed capacity of coal-fired increases to 25,246MW in 

2025, which is 4,136MW lower than the baseline scenario, but the capacity of 

LNG-fired reaches to 35,869MW, which is 14,192MW higher than the baseline 

scenario.  

 

Fig. 2 Shares of installation capacity by technology in CO2 emission reduction 

scenario 1 

Table 5 indicates the comparison of the regional installed capacity between 

baseline and CO2 emission reduction scenario 1 in 2025. The capacity of coal-fired 



from northern and southern regions decreases 1,881MW and 2,330MW; nevertheless 

slightly rises 75MW from central region in 2025. This shows the incorporation of CO2 

emissions reduction target has a negligible impact on the capacity of coal-fired in the 

central region. Because the capacity of coal-fired in central region (5,500MW) is the 

highest of all regions in the current year, hence it is less influenced by other influential 

factors in the simulation. On the other hand, the capacity of LNG-fired expands in 

northern, central and southern regions, with an increase of 3,756MW in northern 

region, 3,397MW in central region, and 7,039MW in southern region.  

Table 5 Comparison of the regional installed capacity between baseline and CO2 

emission reduction scenario 1 in 2025 

  Unit: MW 

Installed capacity in 2025 

Region Technologies 
Baseline scenario 

CO2 emission 

reduction scenario 1 (C)-(A) 

(A) (C) 

Northern 

region 

Coal-fired 6,557 4,676 -1,881 

Oil-fired 95 95 0 

LNG-fired 8,914 12,670 3,756 

Nuclear 0 0 0 

Hydro 281 278 -3 

Wind 295 163 -132 

Central 

region 

Coal-fired 10,498 10,573 75 

Oil-fired 567 81 -486 

LNG-fired 7,101 10,498 3,397 

Hydro 1,472 1,479 7 

Wind 427 543 116 

Southern 

region 

Coal-fired 11,030 8,700 -2,330 

Oil-fired 0 0 0 

LNG-fired 5,661 12,700 7,039 

Nuclear 0 0 0 

Hydro 183 180 -3 

Wind 478 494 16 

Eastern 

region 

Coal-fired 1,297 1297 0 

Hydro 213.6 213.6 0 

CO2 emission reduction scenario 2 assumed the extension of nuclear power 

plants as well as the CO2 emissions reduction target. Figure 3 exhibits shares of 

installation capacity by technology in CO2 emission reduction scenario 2. In 

http://tw.dictionary.search.yahoo.com/search;_ylt=AwrsMde74F5VsBUAq8h9rolQ;_ylu=X3oDMTBvNzExdnU3BGNvbG8DBHBvcwMzBHZ0aWQDBHNlYwNzYw--?p=negligible&ei=UTF-8&flt=


comparison with the baseline scenario, the total installed capacity of coal-fired and 

LNG-fired varies significantly. The total installed capacity of coal-fired climbs to 

29,382MW in 2025, which is 3,051MW lower than the baseline scenario. In the 

contrast, the total installed capacity of LNG-fired expands to 33,790MW in 2025, 

which is 12,113MW higher than the baseline scenario.  

In addition, the capacity of oil-fired reduces 477MW compared to the baseline 

scenario. The capacity changes for conventional hydro and wind power between 

baseline and CO2 emission reduction scenario 2 are negligible, due to reaching the 

upper limit of development potential. 

 

Fig. 3 Shares of installation capacity by technology in CO2 emission reduction 

scenario 2 

Table 6 presents the comparison of the regional installed capacity between 

baseline and CO2 emission reduction scenario 2 in 2025. Except for the 

inconsequential capacity changes in eastern region, the northern, central and southern 

regions all show a decrease in the capacity of coal-fired, but an increase in the 

capacity of LNG-fired.  

 

 

 

 

 

 

 



Table 6 Comparison of the regional installed capacity between baseline and CO2 

emission reduction scenario 2 in 2025 

 Unit: MW 

Installed capacity in 2025 

Region Technologies 
Baseline scenario 

CO2 emission 

reduction scenario 2 (D)-(A) 

(A) (D) 

Northern 

region 

Coal-fired 6,557 5,476 -1,081 

Oil-fired 95 95 0 

LNG-fired 8,914 11,173 2,259 

Nuclear 0 3,242 3,242 

Hydro 281 267 -14 

Wind 295 163 -132 

Central 

region 

Coal-fired 10,498 9,456 -1,042 

Oil-fired 567 81 -486 

LNG-fired 7,101 9,894 2,793 

Hydro 1,472 1,494 22 

Wind 427 466 39 

Southern 

region 

Coal-fired 11,030 10,101 -929 

Oil-fired 0 8 8 

LNG-fired 5,661 12,723 7,062 

Nuclear 0 1,902 1,902 

Hydro 183 175.2 -8 

Wind 478 571 93 

Eastern 

region 

Coal-fired 1,297 1,297 0 

Hydro 213.6 213.6 0 

 

6. Conclusion 

Traditional electricity planning models apply the least-cost method to select from 

a range of electricity generating technologies. In other words, a deterministic demand 

is to be met at minimum cost. In addition, the previous stochastic programming 

studies in electricity planning field merely required that total power output must 

satisfy the aggregate electricity demand. This disregards load demand diversity. Hence, 

this work presents the development of a two-stage stochastic programming model for 

the optimal planning of regional electric portfolios under load demand uncertainty. 

The relevant constraints of traditional electricity planning models are also 

incorporated in model construction. In addition, an approach which combines the 



scenario tree method and Monte Carlo simulation is proposed to reduce possible 

nodes and determine the future electricity demand values and probability rather than 

assign path probabilities arbitrarily. 

A case study of Taiwan’s electricity sector was used to demonstrate the 

applicability of the developed model. The simulation results of the scenarios that 

considered a lifetime extension of existing nuclear power plants showed that the 

capacity of coal-fired power decreased in the northern, central, and southern regions. 

For LNG-fired power, the capacity decreases drastically in the northern and central 

regions; however, it demonstrates a negligible change in the southern region. When a 

CO2 emissions reduction target was incorporated into the simulation, the total 

installed capacity of coal-fired was shown to decrease, especially in the northern and 

southern regions. However, the capacity of LNG-fired power was shown to increase 

significantly in all regions. 

The approach presented here could readily be modified to a mixed integer 

programming approach, so as to model power generation investments in 

technologically consistent blocks, rather than treating capacity as a continuous 

variable. The methodology has been extended to include an analysis of robustness in 

relation to fuel price uncertainty, as well as uncertainty relating to technological 

parameters.  
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